点距:指显示屏上相邻的两个象素点之间的距离(即相邻的同基色点之间的中心距离)在显示屏幕大小一定的前提下,点距越小,则屏幕上的象素排列越紧密,图象就越清晰细腻。用显示区域的宽和高分别除以点距,即得到显示器在垂直和水平方向最高可以显示的点数。以14寸,0.28mm点距显示器为例,它在水平方向最多可以显示1024个点,在竖直方向最多可显示768个点,因此极限分辩率为1024*768。超过这个模式,屏幕上的相邻象素会互相干扰,反而使图象变动模糊不清。目前点距主要有0.39,0.31,0.28,0.26,0.24,0.22mm等几种规格,最小的可达0.20mm。一般来讲,小点距和良好的汇聚性能相结合,才能达到更好的显示效果。(单位:mm)——老点的点距可以达到纳米级别
点状点距,条状点距,柱状点距:一个显示器的点距是.25的Trinitron显像管,而另一个是.28的平面直角显像管,那么有许多人可能会认为一定是Sony的.25的Trinitron显像管的图像是会更清晰吧,那当然,点距越小的不就是越清晰吗? 那你就错了,点距指的是两点‘同色发光荧光体’之中心点间的直线距离,并且越小就越能得到更精细的画面。但因使用的技术不同,点状点距与条状点距与柱状点距是无法精确地比较的。若粗略地计算,0.25mm的柱状点距约只等于0.27mm的点状点距。也就是说,0.26的点状点距的显像管会是比0.25mm的Trinitron/DiamondTron显像管的解析力要强。那么为什么还要采用0.25mmTrinitron/DiamondTron的显像管呢?这是因为它们的对比度很强,显示出来的画面更加鲜艳,夺目,很适合高端的应用。
栅距:由于SONY推出的特丽珑显象管采用了栅状荫罩,因此引入了栅距的概念。它指的是显象管相邻线条之间的距离,此时电子枪对显象管屏幕的扫描是以线条为象素单位的。(单位:mm)
分辨率:(Resalution)构成一个影象的象素总和,一般用水平象素个数x垂直象素个数来表示。分辨率越高,图象就越清晰,但所得的图象或文字越小。它和刷新频率的关系比较密切,刷新频率为85Hz时分辨率越高,则显示器的性能也越好。可以把分辨率划分为CGA,EGA,VGA,SVGA等几种;按照水平和垂直象素数目来区分,则可以分:320x200,640x480,800x600,1024x768,1280x1024,1600x1280等几种。
刷新频率:刷新频率分为垂直刷新率和水平刷新率,垂直刷新率表示屏幕的图象每秒种重绘多少次。也就是指每秒钟屏幕刷新的次数,以Hz(赫兹)为单位。VESA组织于97年规定85Hz逐行扫描为无闪烁的标准场频水平刷新率,水平刷新率又称行频,它表示显示器从左到右绘制一条水平线所用的时间,以kHz为单位。水平和垂直刷新率及分辨率三者是相关的,所以只要知道了显示器及显卡能够提供的最高垂直刷新率,就可以算出水平刷新率的数值。所以一般提到的刷新率通常指垂直刷新率。刷新率的高低对保护眼睛很重要,当刷新率低于60Hz的时候,屏幕会有明显的抖动,而一般要到72Hz以上才能较好的保护你的眼睛。值得一提的是,一般厂商在广告中宣称的最高刷新频率指的其实是最低分辨率下的情况。
场频:频指垂直扫描速度(Vertical Scan Rate),即刷新频率,一般在60-100Hz左右 场频也叫屏幕刷新频率,指屏幕在每秒钟内更新的次数。人眼睛的视觉暂留约为每秒16-24次左右,因此只要以每秒30次或更短的时间间隔来更新屏幕画面,就可以骗过人的眼睛,让我们以为画面没有变过。虽然如此,实际上每秒30次的屏幕刷新率所产生的闪烁现象我们的眼睛仍然能够察觉从而产生疲劳的感觉。所以屏幕的场频越高,画面越稳定,使用者越感觉舒适。 一般屏幕刷新率场频在每秒75次以上人眼就完全觉察不到了,所以建议场频设定在75Hz-85Hz之间,这足以满足一般使用者的需求了。
行频:即水平扫描频率,指显示器所能达到的每秒内对水平偏转信号的刷新次数,也就是指显像管电子枪在每秒钟内根据水平信号对显示屏进行扫描的次数。如50KHz表示每秒钟显像管电子枪在屏幕上写50千行点。普通14寸彩色显示器的水平扫描频率通常从35.5KHz到66KHz不等,而较好的大屏幕彩色显示器则可达到120KHz的水平(单位:KHz)
扫描频率:指显示器的屏幕在一秒钟之内可以进行多少次全画面扫描。其值越高,画面越稳定。
隔行扫描:(Interlaced)该技术最先由IBM在其8514A显示器上推出,其原理是在对显示屏进行扫描时,先扫描奇数行,再扫描偶数行,扫描两遍的结果才组成一幅完整的图象。这种扫描方式容易实现,成本较低,但是在分辨率达到800×600或更高时,这种扫描方式下的图象会有很大的闪烁感,容易使操作者眼睛疲劳。一般大屏幕彩色显示器都不采用这种扫描方式。
逐行/隔行显示:显示管的电子枪扫描可分为隔行(Interlace)和逐行(non- Interlace)两种。逐行显示是顺序显示每一行。隔行是指每隔一行显示一行到底后再返回显隔行示刚才未显示的行,显示器在低分辨率下其实也是逐行显示的,只有在分辨率增高到一定程度才改为隔行显示。在相同的刷新频率下,隔行显示的图像会比逐行显示闪烁和抖动的更为厉害。不过如今生产的显示器几乎已没有隔行的了。
逐行扫描:(Non-Interlaced)逐行扫描针对隔行扫描方式的缺陷,后来又推出了逐行扫描方式,这种方式是按顺序(不跳行)地扫描输出,一次扫描完毕就组成一幅图象。显示画面没有闪烁的感觉,因此更适合高分辨率下使用,但是对显示器的扫描频率和视频率带宽也提出了较高的要求。很明显,扫描率越高,刷新速度越快,显示就越稳定。现在所有的大屏幕彩显都采用的是逐行扫描方式。
过扫描:是一种新颖的显示器控制功能,在实际显示画面以外的区域也加载有视频扫描信号,只需按动一下按键,即可使画面显示区域方便地增大到全屏,扩展用户的视野。这一功能要求显示器具备更高的带宽和扫描频率。
显示器调整功能:一般的屏幕调整功能,应该包括亮度、对比度、垂直位置、垂直显示尺寸、水平位置、水平显示尺寸等。另外一像5GT的高阶产品更是有消磁、针垫型失真修正、平行四边型失真修正、魔纹失真修正及色温调教功能。对于高端的图形应用而言,这些功能都是极其需要的。 为了减少按钮,增加使用者的方便性,许多厂商开发了专属的画面调控功能,即为一般所谓的OSD(On-screen Display)视控功能。它将原本是一颗颗按键的所有或部分调整功能,整合到一个画面的选单,以图示的方式让使用者更轻易地了解操作方式,5GT更有语言选择功能,可惜只有英语、法语等,但就是没有中文.
调节方式:调节方式从早期的模拟式到现在的数码式调节可以说是越来越方便,功能也越来越强大了。数码式调节与模拟式调节相比,对图像的控制更加精确,操作更加简便,界面也友好得多。另外可以让你存储多个应用程序的屏幕参数也是十分体贴用户的设计。因此它已经取代了模拟式调节而成为调节方式的主流。数码式调节按调节界面分主要有三种:普通数码式、屏幕菜单式和飞梭单键式。各有特色,用户可根据自己的喜好来选择,了解了以上几项基本的指标后,我想各位对如何选择显示器大致有个底了。再看看厂商的产品说明书就可以简单比较比较了。但买显示器光靠枯燥的数据对比肯定不行,主观的感受更加重要。
像素:显示器一般采用光栅扫描方式,即电子束从左向右,自上向下作水平扫描和垂直扫描,电子束撞击显示屏上的众多的荧光粉点而使其发光,每个发光点就是一个像素。分辨率是指屏幕上有多少个象素点,分辨率越高,屏幕上的像素越多,图像也就越清晰。在最高分辨率下,一个发光点对应一个像素。如果设置低于最高分辨率则一个像素可能覆盖多个发光点。 电子枪:位于显象管内部,处于工作状态时不断射出电子束,激发屏幕上的磷光点发光的装置。
显示器的带宽:所谓带宽是显示器视频放大器通频带宽度的简称,一个电路的带宽实际上是反映该电路对输入信号的响应速度。带宽越宽,惯性越小,响应速度越快,允许通过的信号频率越高,信号失真越小,它反映了显示器的解像能力。以MHz(兆赫兹)为单位,它比行频更具综合性。从表面上看,只需用行频乘以水平分辨率就可以得到带宽。但实际上,电子枪在扫描时扫过水平方向上的像素点数与垂直方向上的像素点数均高于理论值,这样才能避免信号在扫描边缘衰减,使图像四周同样清晰。水平分辨率大约为实际扫描值的80%,垂直分辨率大约为实际扫描值的93%,所以带宽的计算公式为:带宽=水平分辨率/0.8×垂直分辨率/0.93×场频。或带宽=水平分辨率×垂直分辨率×场频×1.344。例如:在1024×768@85Hz的模式下,带宽为1024×768×85×1.344=89.84199868MHz。 带宽的值越大,显示器性能越好。
屏幕可视区域:指的是我们可以看到的屏幕,平常说的17寸、15寸实际上指显像管的尺寸,一般可通过量取屏幕左下角到右上角的距离得到。由于显像管都是安装在塑胶外壳内,且由于屏幕的四个边都有黑框无法显示,因此许多人量显示器屏幕的对角线时,根本没有厂家所说的那种尺寸,所以就算是最好的显示器也不能做到可视面积等于显像管面积,只能尽量做到接近与显像管面积,这是评定一个显示器好坏的标准之一,相同的显像管,不同的公司的产品,它的可视面积就不一定会一样,所以我们在购买显示器时要注意尽量买可视面积最接近于显像管面积的显示器.一般14寸的显示器可视范围往往只有12寸;15英寸显示器的可视面积在13.6英英寸到14.2英寸之间,而17英寸显示器的可视面积在15.6英寸到16.2英寸之间。
特丽珑:(trinitron)它是SONY公司的一种独特的显象管技术,采用栅状遮罩,及单枪三束专利技术,能产生比较亮丽、鲜艳的画质。
钻石珑:(diamondtron)三菱公司研制的显象管技术,继承了特丽珑的优点,采用超纯黑屏幕和四倍动态聚焦电子枪,画质出众。
DYNAFLAT:平面显示器有两种形式,即物理平和光学平。由三星公司开发出的DYNAFLAT(动态平面)技术。它使用的显示器外厚玻璃的外表面是纯平的,但没有使用纯平的内表面,而是使用了球面(向用户方向略微突出),它的曲率是根据SNELL公式计算出来的。其原因就在于经过这样的处理后,内面发光点射出的光再经过厚玻璃的折射后进入人眼成像,光路反向沿长线形成的虚光点组成的图像则是真正的平面。简单地说DYNAFLAT技术就是利用非物理平面的厚玻璃(略微突出)的内表面制造出光学平面的图像。
物理平:是指从物理上的各个表面都是纯平面,特别是显示器最外面的一层厚玻璃的内外两面从物理上看都是绝对平面,但这种绝对平面反而造成用户在面对显示器的时候看到的不是平面图像,而是略有些凹陷。其原因就在于如果把人眼看成是屏幕前的两个点,越大屏幕的显示器从边缘部分发的光经过厚厚的玻璃折射后进入人眼成像,由于人眼对折射的不敏感性,光路返回后在实际发光点前形成一个虚拟的发光点,即人眼误以为虚拟的发光点是真正的发光点。这种情况在显示器的中心部位还不太严重,但越到屏幕边缘虚点和实际发光点相差越大,具体来讲就是虚点越靠前,就如同人眼看插在玻璃杯里的筷子是折断的一样。把这些虚点连起来就会发现整个图像向内(远离用户方向)凹陷。所以说物理平并不一定就恰好能产生出纯平的图像。
CRT显像管(CathodeTube阴极射线管):主要由电子枪、偏转线圈、荫罩、荧光粉层(Phosphor)和玻璃外壳五大部分组成,其原理是利用显像管内的电子枪,将光束射出,穿过荫罩上的小孔,打在一个内层玻璃涂满了无数三原色的荧光粉层上,电子束会使得这些荧光粉发光,最终就形成了你所看到的画面了。而CRT尺寸就是显像管实际尺寸,也是通常所说的显示器尺寸,其单位为英寸(1英寸=25.4mm)
球面显象管:显象管在水平和垂直方向上是曲面。它的制造工艺较成熟,价格较低,但图象显示失真,实际显示面积较小,反光现象严重。 柱面显象管:采用垂直栅条设计,显象管在垂直方向完全笔直,水平方向略有弧度。光透性好,图象更清晰 平面直角显象管:屏幕弯曲更小,更接近“平面”,增强了画面的真实感,这种显象管的屏幕反光较小 色温:描述光源色彩的参数。光源发光时产生一组光谱,用纯黑色产生同样的光谱所需达到的温度既为该光源的色温。
柱面显像管:主要是以SONY的Trinitron(特丽珑)和三菱的DiamondTron(钻石珑)它的表面就好像是一个罐头的侧面,左右有弧度但上下没有,具有防止上下画面扭曲及反光的作用。
阻尼线(有人叫防伪线):Trinitron显像管的一个最大的特征是在显视屏上会有15吋一条,17吋有两条的不很明显的黑线,它的名称叫做阻尼线,是用来将阴罩挂定的,可能会造成在应用中有点影响。
平面直角显像管:平面直角显像管是指整个直角和“近似”平面的显示屏。它对于反光以及画面的变形的免疫力最高。
聚焦性能:指显象管中电子枪发射电子束后通过其调节功能而显示出清晰图象的能力,反映出对电子束扫描偏差的纠错能力。 汇聚性能:红绿蓝(R.G.B)三原色电子束在屏幕中的正确聚焦能力,反映出显象管偏转线圈产生的电磁场对电子束运行轨迹的控制能力。
内部涂层:厂家生产显象管时在荧光粉背面涂上反射层以提高发光效率,同时降低象素间的串色,是显象管的重大技术差别之一。 外部镀膜:显象管的外部镀膜,可阻挡有害射线、消除静电、降低屏幕反光。不同厂家的镀膜材料和技术各不相同。
白平衡:衡量彩显中红绿蓝(R.G.B)三原色混合生成白色的精确程度的指标。 荫罩:是显像管的造色机构,是安装在荧光屏内侧的上面刻有40多万个孔的薄钢板。荫罩孔的作用在于保证三个电子共同穿过同一个荫罩孔,准确地激发荧光粉,使之发出红、绿、蓝三色光,见图2。而荫罩可分为孔状荫罩和条栅状荫罩两种类型。 孔状荫罩:电子枪发出的电子束通过其上的小孔按一定分布射到屏幕上的荧光点上,从而形成画面。小孔排列越紧密,其显示分辨率就越大。
栅状荫罩:特丽珑或钻石珑所提供的条状遮罩。相对于传统的孔状荫罩,它可以提供更高的亮度和较鲜艳的色彩。
偏转线圈:位于显象管内部。通电后可产生较强的磁场,控制经过加速的电子束的飞行方向。 数控调节:用数码的形式对显示器的各项参数(如亮度、对比度、色温等)进行调节控制,使调节功能更完备,更直观。 菜单调节(OSD):将显示器的调节功能用图形和数码的形式显示在屏幕上,简化了使用者的操作,并且可以存储调试结果,减少了重复操作。
同屏显示(DD):是OSD的二代,为三星显示器专有。DD将显示器的显示效果和过程都直观地显示在屏幕上,用户只需触动屏幕下方的按键便可调节多种画面设置,所有调节都可存储。
超黑距阵屏幕:是一种利用碳喷涂于屏幕荧光磷点之间,以改善对比度的方法。这种屏幕比一般屏幕暗得多,屏幕影像抗外界光线干扰能力大大增强,图像更为亮丽。目前名牌厂家的显像管基本上都采用了这一技术超清晰。
数码式调节按调节界面: 根据操作界面的不同,数控可分为普通数字调节和OSD(On Screen Display,画中画)两种。其中OSD可以直接在屏幕中显示功能选项和调节状态,因此操作更为直观,调节精度也更高。OSD方式已为越来越多显示器所采用。
CRT涂层:屏幕在使用时会因电子撞击荧光屏及外界光源影响而产生静电、闪烁、反光等干扰。这不仅使图像变得模糊,更为严重的是直接危害到使用者的视力健康。因此CRT表面均应附着有涂层,以减少损害程度。目前主要应用的涂层有如下几种:表面蚀刻屏幕涂层,ARAS涂层,Ultra-ClearCoating.
表面蚀刻屏幕涂层(DirectEtchingCoating):直接蚀刻CRT表层,使表面产生微小凹凸,以减低外界光源反射干扰。 AGAS(Anti-Glare、Anti-Static)涂层:抗强光、防静电涂层。涂层材料是一种矽涂料,可扩散反射光,减低强光干扰,含有导电微粒。
ARAS(Anti-Reflection、Anti-Static)涂层:防反射、防静电涂层。涂层材料是含一个多层结构的透明电介质涂料,可有效抑制外界光线的反射现象且不会扩散反射光,画面清晰度较好。
Ultra-ClearCoating:超清晰涂层。这是三星显示器特有的一种透明多薄膜复合涂层。它不但大幅度地吸收并降低反射光的干扰,而且减少了图像投射光线的变形,大大增强了图像对比度和艳丽度,且机械强度较佳。它与三星显示器先进的动态聚焦系统、铁镍合金Shadow荫罩(INVARShadowMask)、超黑底屏幕相结合,可以达到最佳的图像清晰度和色彩。其它技术指标。如色温(9300°K/6500°K/5000°K)、同步输入信号(分离、复合同步、绿枪同步)等等。这些技术指标对普通用户意义不大,限于篇幅,就不再介
BNC接头:有别于普通15针D-SUB标准接头的特殊显示器接口。由R.G.B三原色信号及行同步、场同步五个独立信号接头组成。主要用于连接工作站等对扫描频率要求很高的系统。BNC接头可以隔绝视频输入信号,使信号相互间干扰减少,且信号频宽较普通D-SUB大,可达到最佳信号响应效果。
显示数据通道(DDC):是一种在主机和显示器之间建立通信的信息通道。支持微软即插即用功能,可充分发挥显示器的显示能力。
DDC1:VESA组织发布的显示器向主机通信的数据连接标准,规定传送数据格式。
DDC2B:基于I2C总线,允许主机读取显示器扩展显示信息的双向交换的数据通道。
DDC2B+:基于I2C总线,允许主机和显示器信息进行双向交换的数据通道,可由主机对显示器发送显示控制命令和代码。
DDC2AB:基于ACCESS总线,遥控显示器的双向数据通道。通信带宽更大,并可连接其他外设(如鼠标器)。 动态聚焦:指电子枪扫描屏幕时,对电子束在屏幕中心和四角聚焦上的差异进行自动补偿的功能。普通的电子枪聚焦时会有散光现象,即在边角时像素点垂直方向和水平方向的焦距长度不同,散光现象在屏幕四角最为明显。为减少这种情况的发生,需要对电子枪做动态的补偿,使屏幕上任何扫描点均能清晰一致。动态聚焦技术是采用一个调节器,周期性产生特殊波形的聚焦电压,使电子束在中心点时电压最低,在边角扫描时电压随焦距增大而逐渐增高,动态地补偿聚焦变化,这样可获得近乎完善的清晰画面
电磁幅射标准:指限制显示器所发出的电磁幅射量的国际标准。目前有两项重要的标准是由下列两个瑞典权威机构所定出来的规则:MPR-II,原先是一项由瑞典劳工部所提出的标准,制定了显示器所放出的电磁幅射量的最高范围,现在已被采用为世界标准。TCO,瑞典TCO组织于1991年制定了一个比MPR-II更严格的标准,特别是为交流电场(AEF)而定。
EPA又称为“能源之星”规范:是一个节能的标准。支持这一标准的显示器能有效地节约电力,提供各种节能状态。此标准已经成为显示器的国际标准,普通显示器都应该支持。
MPR-Ⅱ:是一个电磁辐射程度的规范,同样已成为国际标准。符合此标准的显示器可称为“超低辐射”,对人体的伤害大大减小。选择显示器时应注意此功能是否支持。
TCO:是一个瑞典的环保组织,它也提供显示器的安全认证。TCO认证的监测范围最广,包括:环保、低辐射、人体工程学、节能等等。其要求最苛刻,是逐台监测的。TCO的认证分为:TCO92、TCO95、TCO99,是按制定的年份来命名的,当然是一个比一个严格。 TCO95是目前最多见的TCO认证,而通过TCO99的显示器就很少了。而且要进行TCO认证需要许多工序,因此会提高显示器的成本。一般通过此认证的显示器要增加近300元的价格。许多显示器为了保证价格,将一部分产品提供监测,另一部分不监测。然后在零售时将TCO认证作为可选,需要的话价钱就要提高。当然追求高品质的人还是会对产品提出更严格的要求的。不过要注意,TCO认证虽然非常苛刻,但它与显示器的画面质量无关,有些通过TCO认证的显示器画面质量也很差。
TCO的环保要求:电脑中多达30%的塑料包装可能有含溴阻燃剂。这些材料和另一类环境毒素PCB有关,怀疑可能对哺乳动物的生殖能力有损害。石墨可以在显示屏、显像管和电容中找到。它损害神经系统并且较高剂量可以导致石墨中毒。镉在可充电电池和某些电脑显示器的色彩显象层中存在。镉损害神经系统,高剂量时有毒。
TCO92:是由瑞典TCO组织于1991年制定的一个比MPR-II更为严格的标准,增加了对交流电场(ATF)的限制,是目前世界上最为严格的低辐射标准。
TCO95:最新的综合性环保及人体工学设计规范,包括一系列标准和功能:基于TCO 92\ISO\MPR-II;人体工学(ISO 9241)和安全性(IEC 950)标准;电源控制标准(NUTEK);低电磁辐射\低磁场辐射标准。
TCO-99:TCO99是继TCO95、TCO92之后所发表的规范,TCO92安全规范是在1992年由瑞典TCO所发表,随后又在此基础上制定了TCO95,而TCO99则是瑞典组织于1999年在TCO95基础上制定的更加严格的安全辐射标准,对用户而言,在相同的亮度、对比度下,辐射会更低。TCO99规范的范围相当广泛,包含环境保护、人体工程学、使用便 利性、能源消耗、电力特性、防火电磁与电场辐射性的相关规定。
即插即用: 早期的显示卡安装时必须自己安装驱动程序,设定相关功能及显示器工作范围搭配等问题,安装过程费时费力。如果安装者没有一些基本的电脑知识,想要发挥显卡的大部分功能就很难了。DDC 界面的好处是让我们设置上述相关功能时更简便。开机前只要将支持DDC的显卡和显示器连接好,开机后 Windows 95/98就可以通过DDC 自动侦测并安装所有的驱动程序并进行优化,完成后使用者就可以直接使用,而无需管其他事,这就是“即插即用”。如果中途更换显示器也没关系,只要将显示器与显卡连接好,执行[控制面板]中的[添加新硬件]下的[添加新硬件向导]即可。 特别提到一点,微软公司每年都搜集各类硬件厂商所注册的INF (EDID)文件,整理后放入新版 Windows 95/98 CD内。这样就可免除众多使用者寻找保管驱动程序的麻烦。
闪烁:(Flicker)指画面强度出现的极快速偏差现象。造成的原因是电子束将一个画面扫描到萤幕上得花一些时间所致。有两种闪烁的现象会发生:一是线条闪烁,二是平面闪烁。前者是因为电子束扫描进画面的每一条线而引起,后者是因为平面重复比率达每秒50个所致。
细颈显示管:是指一种比标准电子管颈细的CRT。主要用于15英寸显示器。标准管直径达29mm,细颈管只有22.5mm。由于管颈细、电子束控制方便、聚焦精确,且体积减小,发热减少,能耗可降低15%左右 红门资讯制作中心 LCD的显示视频数字接口标准:
P&D Digital Plug-and-Display (P&D) 标准:是视频电子标准委员会(VESA)制定的,但是,在1997年该标准发布的时候已经和当时的实际情况大大脱节。比如在P&D标准中定义的显示信号接口是一个多功能的接口,能够同时传送数字信号和模拟信号,但是这一点毫无意义,额外的USB和IEEE 1394接口除了会大大增加成本,而且对于显示信号的传送是画蛇添足,也没有哪个显示卡制造商愿意在自己的产品上添加这样昂贵而无用的接口。也正是因为VESA迟迟拿不出象样标准的失误,很多公司都各自联合伙伴推出各自的标准,使得数字接口标准的现况如此混乱。
DFP - Digital Flat Panel Group DFP - Digital Flat Panel Group 标准:是Compaq公司提出的一个行业标准,20针的DFP接口可以支持最高1280X1024分辨率。 支持DFP标准的大公司还有加拿大的ATI,该公司生产出了第一块具有DFP接口的显卡。后来VESA也将DFP接口选做P&D标准的过渡,实际上只要将两种接口标准的功能定义做一个比较就会发现两者并没有什么大的差别。在电气性能的定义上,两者是完全一致的,DFP标准屏除了原来P&D接口标准中那些昂贵而不实用的选件,比如USB,IEEE1394等等,所以DFP标准在施行的时候要便宜得多。但是DFP标准只支持到1280x1024的分辨率。 目前,采用DFP标准接口的显卡有ATI's Rage Pro LT, Voodoo 3's 3500 和Number Nine's SR9 。但是分辨率不足的先天缺陷使得DFP接口不可能太长久。
DVI - Digital Visual Interface DVI - Digital Visual Interface 接口:可以传送数字信号和模拟信号,并且实现的分辨率也可以高得多。这一标准由Digital Display Working Group (DDWG)提出,支持DVI标准的公司有很多也是原来DFP标准的支持者,随后VESA也接受了DVI标准。从技术发展角度来看,DVI接口的前途一片光明,因为它可以支持1280x1024以上的分辨率,而且同时也可以传输模拟的视频信号,这样CRT显示器也可以应用在DVI接口上。
色彩控制:针对排版印刷应用而设计的全新影像色彩调控功能,为用户提供可自行设定的色彩环境。可分别对R、G、B三原色的色饱和度及画面的颜色一致性进行调节修正,用以匹配高档彩色打印输出,能达到所见即所得的效果。
CRT:它是一根真空管,里面有一个或多个电子枪,电子枪射出电子束,电子束射到真空管前表面的内侧时,前表面内侧上的发光涂料受到电子束的击打而发光。
LCD:所谓液晶,是在常温下呈液态,并且光学性质近似于晶体的一大类物质的统称,于19世纪末被奥地利的一位植物学家发现。液晶的分子排列对外界的环境变化(如温度、电磁场的变化)十分敏感。当液晶的分子排列发生变化时,其光学性质也随之改变。利用液晶的这一特点,本世纪60年代英国的科学家制造出了第一块LCD。)
PDP: 除了两块玻璃之间夹着的不是液晶而是一层气体以外,等离子体显示屏的工作方式类似于有源阵列LCD技术。它把气体和电流结合起来激发象素,虽然分辨率稍低,但是图象明亮且成本较有源阵列LCD低,适合商业演示使用。
调节范围:为了适应不同放置地点以及不同人的需要,最好显示器可以作向上20度、向下5度以及垂直方向上约150毫米的调整。
可视角度: 是专指LCD的,所谓“可视角度”是指站在始于屏幕法线的某个角度的位置时仍可清晰看见萤幕图像所构成的最大角度。当然了,可视角是愈大愈好。通常,LCD的可视角度都是左右对称,但上下可就不一定了。而且常常是上下角度小於左右角度。由于每个人的视力不同;因此我们以对比度为准。在最大可视角时所量到的对比愈大愈好。
电子枪:显示器的中心处就是电子枪,位于CRT的最底端。从本质上讲,电子枪不过是体积更大、功率更大的二极管。电子在电子枪那儿获得动能,电子到达CRT前表面内侧时撞击萤光粉(磷质)而失去动能,萤光粉受到撞击而发光、发热,这是一个动能向光能、热能的转换过程。
偏转线圈:从电子枪射出的电子束是直线发射的,显示器要成像,电子束必须连续不断地从左到右、从上到下地向DRT前面板发射电子束,那么电子束怎样才能改变发射方向呢?这就需要用到偏转线圈。它能产生强大的、不断变化的磁场,电子束通过该磁场时发生偏转;磁场方向不断变化,电子束就能连续不断地对荧光屏进行扫描。